Abstract Detail



Ecology

DeLeo, Victoria [1], Menge, Duncan N. L. [2], Hanks, Ephraim M. [3], Juenger, Thomas [4], Lasky, Jesse [5].

Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana.

Intraspecific trait variation is partly caused by genetic and plastic responses to environment. This intraspecific diversity is captured in immense natural history collections, giving us a window into trait variation across continents and through centuries of environmental shifts. We measured phenotypes on a 216-year time series of Arabidopsis thaliana accessions from across the native range. We applied spatially varying coefficient models to quantify region-specific trends in trait coordination and trait responses to climate gradients. All traits exhibited significant change across space and/or through time. For example, δ15N decreased over time across much of the range and leaf C:N increased, consistent with predictions based on anthropogenic changes in land use and atmosphere. Plants were collected later in the growing season in more recent years in many regions, possibly because populations shifted toward more spring germination and summer flowering as opposed to fall germination and spring flowering. When climate variables were considered, collection dates were earlier in warmer years, while summer rainfall had opposing associations with collection date depending on regions. There was modest correlation among traits, indicating that there is not a single life history/physiology axis. Nevertheless, leaf C:N was low for summer- versus spring-collected plants, consistent with a life history-physiology axis from slow-growing winter annuals to fast-growing spring/summer annuals. Regional heterogeneity in phenotype trends indicates complex responses to spatiotemporal environmental gradients potentially due to geographic genetic variation and climate interactions with other aspects of environment. Our study demonstrates how natural history collections can be used to broadly characterize trait responses to environment, revealing heterogeneity in response to anthropogenic change.


1 - Pennsylvania State University, 405d Life Sciences Building, University Park, PA, 16802, USA
2 - Columbia University, E3B, 10th floor, Schermerhorn Extension, 1200 Amsterdam Avenue, New York, NY, 10027, USA
3 - Pennsylvania State University, Statistics, W-250 Millennium Science Complex , University Park, PA, 16802, USA
4 - University Of Texas At Austin, Department Of Integrative Biology, 2401 Speedway Blvd., Austin, TX, 78712, United States
5 - Pennsylvania State University, Biology, 408 Life Sciences Building, University Park, PA, 16802, USA

Keywords:
none specified

Presentation Type: Oral Paper
Number: 0005
Abstract ID:729
Candidate for Awards:None


Copyright © 2000-2019, Botanical Society of America. All rights reserved